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1.0 INTRODUCTION

A problem of current interest to the Navy is the automatic detection and classification of faults in
mechanical systems such as the transmissions, gearboxes, and bearings of helicopters. The
problem is important for both economic and safety reasons. Using automated fault detection and
classification, machinery repair can be undertaken as needed and can prevent catastrophic failure.
This condition-based maintenance approach is more efficient and cost-effective than the use of
predetermined maintenance schedules. Additionally, automated fault detection and classification
systems can alert machinery operators, such as helicopter pilots, of the onset of a mechanical
problem, thus allowing the pilot to take precautions, such as landing the aircraft, before a
potentially catastrophic failure occurs.

The machinery fault detection and classification problem is general in nature, and the
methodology developed in Phase I is applicable to a variety fault detection scenarios involving
multichannel and multisensor time series sensor data. Current helicopter gearbox fault detection
techniques make use of metal particle detectors in the transmission oil as well as vibration
sensors. For the vibration data, relatively simple metrics and thresholds are specified using
analytic models for the gearboxes and bearings. Unfortunately, the performance of this approach
is only as good as the model developed. In many cases, the interaction of fault conditions with
the mechanical system is time varying and highly nonlinear so that anticipated signatures may
not be seen!. Specifying an accurate model is at best difficult and often impossible.
Additionally, such model-based processing is inherently inflexible, being applicable only to the
specific system of interest. Model-based fault detection and classification algorithms cannot
easily be adapted to accommodate machinery (transmission) design changes, new fault detection
tasks, or the addition of new sensor types.

For the Phase I effort, we have developed a variety of neural networks, coupled with spectral
feature extractors, to solve the fault detection and classification problem. A novel, hierarchical
neural network architecture was developed that fuses multifeature and multichannel
accelerometer vibrational sensor data to successfully detect and classify fault conditions. The
approach was successfully applied to three different types of rotating machinery (helicopter
gearboxes, fire pumps, and condenser pumps). The approach also allows for the evaluation of
the utility of the various feature extractors and for the channels to include in solving the fault
detection/classification problem at hand.

The goal of the Phase I research effort was to develop and demonstrate a system that uses
multiple feature extractors and a neural net classifier to perform fault detection and classification

1D, Rock, D. Malkoff, and R. Stewart, “Al and Aircraft Health Monitoring,” Al Expert, Feb. 1993.
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for rotating machinery. The systems developed are sensitive to fault conditions and robust with
respect to normal operation and fault variations. The primary tasks accomplished in the
development and demonstration of the system for Phase I were the following:

» Identify and develop feature extraction processing. Several features were
examined in Phase I: the short-time Fourier transform (STFT), instantaneous time-
frequency representations (TFRs), Prony’s model method, and the wavelet transform
using the Gabor wavelet filter.

» Assess the performance of the various feature extractors. The real accelerometer
data was processed using each of the candidate feature extractors, and an evaluation
of the utility of each was made.

* Train the neural network. Training templates for each fault class were selected
using the feature vectors, and multiple three-layer perceptron neural networks were
trained with these templates. The outputs from the first-layer nets were merged and
used to train a second-layer net using the hierarchical neural net approach2-.

» Test the system. System performance was assessed by running test accelerometer

data through the system and determining the system’s probability of fault detection

(Pp), probability of false alarm (Pga), probability of correct classification (Pc), and

probability of misclassification (Pmc).
The approach developed in the Phase I effort was applied to three different data sets. The data
sets included two channels of data from the Hollin's data set4, six channels of data from an
aircraft carrier fire pump, and six channels of data from a condenser pump. All the
measurements were of mechanical vibrations of the system. The approach developed was easily
adapted to handle all of the different types of mechanical systems and vibration measurements.
In all cases, the prototype systems developed gave perfect performance for the data sets supplied
for the Phase 1 effort. That is, each system developed gave the correct classifications with no

resulting false alarms for all the data sets processed.

It was also found that the simple FFT feature extractor was sufficient to solve the problem for all
three of the mechanical systems. The FFT is the most computationally efficient of all the feature
extractors considered. This result is important when considering real-time implementation for
future development. It was found that the high-resolution time/frequency feature extractors gave
relatively poor performance. It is believed that the high-resolution feature extractors give too
much detail when included in the overall system. The high-resolution features are not robust
features for solving the detection/classification problem considered here; there is too much
variation within the data. FFT processing, on the other hand, tends to smear the features so that

2 T. Brotherton, D. Fogel, and E. Mears, “Final Report for Applications of Data Fusion to Signal Processing Phase 1
SBIR,” DARPA order no. 5916, April 1992.

3 T. Brotherton and E. Mears, “Application of Neural Nets to Feature Fusion,” 26th Asilomar Conference on
Signals, Systems, and Computers, October 1992,

4M. Hollins, “The Effects of Vibration Sensor Location in Detecting Gear and Bearing Defects,” 415t Mechanical
Failures Prevention Group Proceedings, 1988.




much of the detail and variation are lost. The result is a more robust feature for detection and
classification.

It was found that multichannel processing gives more robust performance than single-channel
processing. By processing multichannel data, the probability of correct classification was
increased while the probability of false alarm was simultaneously reduced. In the six-channel
pump data, faults in the test data sets did not appear on all of the channels that were used in the
training data sets. The channels that the fault did appear on were fault dependent. For the two-
channel Hollin’s data set, it was found that only a single channel was required to solve the
detection/classification problem; the second channel did not add any information to aid detection
and classification.

The remainder of this report gives more detailed descriptions and details found in the Phase I
effort. Section 2 describes the multifeature/hierarchical neural network approach used for
processing of the three data sets. Section 3 gives detailed results for processing of the three data
sets. Section 4 gives conclusions and Section 5 gives recommendations. Appendix A is a copy
of a conference paper developed under Phase L.

20 APPROACH

The original Phase I proposal proposed multifeature fusion using an architecture like that shown
in Figure 1. In this system, feature vectors from multiple signal processing techniques are
appended into a larger “fusion” vector, and these expanded vectors are used as inputs to a three-
layer perceptron neural network for fault detection and classification.

However, subsequent research under DARPA SBIR funding demonstrated the superiority of a
hierarchical neural network data fusion architecture. The advancements made in the DARPA
program were used as a starting point for the fault detection research. The hierarchical
architecture developed and tested in the DARPA program is shown in Figure 2.

In the generic system shown in Figure 2, multiple channels and/or feature extractors feed their
own individual first-layer neural networks. These neural nets make their own independent
detection and classification decisions based on prior training. The outputs from the first-layer
networks are vectors of activation levels. The activation level for each normal or fault class
indicates each first-layer net’s decision as to the operating condition of the machinery. The
output activation vectors from the first-layer nets are then merged (appended) into a fusion
vector. The time series of fusion vectors from the first-layer nets are then used as inputs to the
second-layer fusion neural network. This network makes the final fault detection and
classification determination. In effect, the first-layer neural nets perform a nonlinear filtering

3 T 70 TTT T a—
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operation on the data in order to produce smaller (reduced dimensionality) feature sets. The
second-layer net fuses the “filtered” information to solve the detection and classification
problem. While the generic architecture of Figure 2 was used for all of the processing in Phase I,
each of the individual data sets employed a problem-specific fault detection and classification
system. The specific systems used are discussed in Section 3.0.

2.1 Hierarchical Neural Net Training and Testing

Figure 3 shows a high-level training and testing flow diagram for the hierarchical neural
network. Initially, the accelerometer data is partitioned to develop training and testing data sets.
The training data is then run through each of the different feature extractors, as shown in

Figure 2. The output feature space representations are examined and exemplars representative of
the events of interest are selected for each feature extractor.

The single-feature exemplars are then used to train the set of first-layer single-feature neural
networks. To finish the training of the hierarchical architecture, each of the trained first-layer
neural nets is rerun on the training data. The output “activation” level vectors from each network
(indicating the input data’s degree of membership for each fault class) are used to form a single
fusion vector; that is, the various outputs are aggregated together to form the “features” for input
to the second-layer neural net. A second exemplar selection is then performed to derive
exemplars with which to train the second-layer network. This fusion net is then trained with the
fusion exemplar vectors. Finally, the entire architecture is tested by inputting the test data. The
resulting fault detection and classification is determined by comparing the class activation levels
at the output of the fusion net.

2.2 Feature Extraction

A major issue in the design of a fault detection and classification system is the selection of
appropriate features. The goal in selecting features is to choose a set that can characterize signals
of interest sufficiently so that classes are well separated when solving the classification problem.
ORINCON has investigated a large variety of feature extraction algorithms>. The feature
extractors investigated and developed for the Phase I effort are discussed below.

o Short-Time Fast Fourier Transform (STFT): The short-time fast Fourier transform
was a good candidate technique because of its ease of implementation. For real-time
applications, fast algorithms and fast chips for hardware realizations are available.
Transition from a prototype system to a dedicated hardware system is low cost. The

5 T. Brotherton, T. Pollard, R. Barton, A. Krieger, L. Marple, “Application of Time-Frequency and Time-Scale
Analysis to Underwater Acoustic Transients,” Proc. IEEE International Symposium on Time-Frequency and Time-
Scale Analysis, Victoria, B.C., Canada, October, 1992.
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technique does not handle extremely short-duration events (on the order of the FFT
size) or very narrowband events (for reasonable FFT sizes). The STFT feature is
found as follows. Let x(7) represent the input data set. Let X,(f) represent the FFT of
the n-th segment of data. That is,

N-1 _;2m

J
X,()=s Y we)xeT+5) e = N
N <o )
where typically T = N/2 (i.e., “50% overlap™) and N is a power of 2. w(?) is a window
function, such as the Hamming window. The magnitude squared is taken of the

output from FFT processing and then the log is taken to form the FFT feature set
characterization of the x(t). The feature input is a set

{1og(|xn(f)|),t15n5t2.f1$f$f2 } 0]

This set is used to form the feature space for any particular time/frequency segment of

the input data.

The Adaptive Optimal Kernel Time-Frequency Representation (AOK TFR): An
instantaneous time-frequency representation (TFR) gives a high-resolution
characterization of the data in time, as well as FFT resolutions in frequency for
signals of interest. The particular TFR that ORINCON used for Phase I was the
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adaptive optimal kernel (AOK) TFR developed by Baraniuk and Jones6:?. The AOK
TFR is a transformation of Cohen’s class, which uses a radially Gaussian signal-
dependent kernel that changes shape to optimally smooth the distribution.

The optimal kernel, &, for a signal is defined as the solution to the following

optirization problem:
00 2
mgx Ign Io | A@r,y) O(r, V’)I rdrdy 3)
subject to
d(r.y)=e 20%(y) @
1 2% 2
— < ,
21[]0 ol w)|rdrdy sa azo. -

A(r,'P) is the ambiguity function (AF) of the signal in polar coordinates. 02(‘¥)
measures the spread of the smoothing kernel as a function of angle. Once the optimal
kernel is computed, the TFR is given by

P(t,0) =51; = [=.A(0,7) ©(8,7) e /& " ggq¢ ©

The representation 1s good for characterizing short-duration and nonstationary events.
The AOK TFR is computationally expensive. As with the STFT feature extractor, a
time sequence of the AOK TFRs form the input retina.

* Prony’s Model Method: Prony’s model method assumes the signals of interest are
modeled by a sum of damped sinusoids. The model is well suited for characterizing
impulsive types of events. The Prony model is of the form:

xit] = kf‘,lAk exp[(e + j27 Ko - D+ 6] o

where x{1] is the observed time series data, p is the model order, At is the amplitude of
the k-th coefficient, oy is the corresponding damping term, f; is the center frequency,
and 6 is the initial phase. The parameters of the model can be estimated using least
squares techniques®. The spectral estimate is found by Fourier transforming the
model defined in equation (7). Since the Prony method assumes that the signals of
interest are impulsive, the model found and the spectra derived from the model give

6 R.G. Baraniuk and D.L. Jones, “A Radially Gaussian, Signal-Dependent Time-Frequency Representation,”
ICASSP ‘91, Toronto, May 1991.

7 R. Baraniuk, D. Jones, T. Brotherton, and S.L. Marple, “Application of Adaptive Time-frequency Representations
to Underwater Acoustic Signal Processing,” 25th Asilomar Conference on Signals, Systems & Computers, vol. 2,
November 1991.

8. L. Marple, Digital Spectral Analysis with Applications, Prentice-Hall, 1987.
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higher-resolution spectral estimates for impulsive events and sequences of impulsive
events than found with standard FFT processing. The Prony model feature set is:

{log(lx’l:NHY(fi),tl Snsn, fisfsh } @®)

where X,Prony(f) is the spectral estimate found as described above.

The model is relatively easy to estimate, so it is computationally efficient when
compared to the instantaneous time-frequency representations, but still slower than
the STFT. Once the exponential parameters have been estimated by the Prony
procedure, spectral plots are created by taking the Fourier transform of the resulting
model. This technique, along with other parametric modeling techniques, has better
time and frequency resolution properties than the STFT.

»  Wavelet Transform: Wavelet analysis, also known as time-scale analysis, is
essentially a method of “constant Q” filtering®. The transform is implemented using a
set of band pass filters whose bandwidths are proportional to their center frequencies.
Thus, very narrow bandwidth filters (with long time durations) were applied at lower
frequencies, while wider bandwidth (with very short time durations) filters were
applied at higher frequencies. Wavelet transforms are especially useful when short-
duration transient events are superimposed upon long-duration, low-frequency
components.

The wavelet transform of a function f{x) represents a decomposition of the function in
terms of dilated and shifted versions of an analyzing wavelet function y(x). The
transform is linear, energy preserving, and invertible so for every function f{x), there
is a unique, continuous 2-D transform Wf{s,u). The wavelet transform can also be
regarded as a time-frequency representation of the signal, in which the parameter s >
0 corresponds to frequency and the parameter 4 € R corresponds to temporal shift.
The wavelet transform has many interesting properties that make it particularly well
suited as a signal representation.

The wavelet transform can be viewed as a time-frequency map of the signal in which
the frequency information is generated by a bank of proportional bandwidth filters.
This entire map can be regarded as a single feature of the signal. Because of the
inverse relationship between bandwidth and temporal support, the wavelet time-
frequency representation automatically provides greater temporal resolution for high-
frequency signal components. This is often very useful when analyzing transient or
highly nonstationary phenomena.

The wavelet features presented herein were generated using an analytic Gabor
wavelet. The wavelet is defined in the frequency domain by the following equation

a-ay? _oi@+ay)’
2 - 2 if @20

H)=1{2i|°
0 if w<0' (9)

where ax = 2% and 6= 6.1182. This choice of parameters results in a time-frequency
map in which the bandwidth of each frequency bin is approximately 1/16th of an octave.

9 0. Rioul and M. Vetterli, “Wavelets and Signal Processing,” IEEE Signal Processing Magazine, October, 1991.
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2.3 Neural Network Classifier

The fundamental building blocks of the fault detection and classification system are the individual
neural networks. There are a multitude of classifiers that can be loosely regarded as “neural”
architectures. During training, neural networks learn how to interpret the input features to solve the
detection/classification problem. Essentially, neural nets can be viewed as nonlinear matched filters.
They simuitaneously detect and classify signals of interest when they appear in their input retinas.
For the Phase I effort, we used a hierarchical neural net approach as shown in Figure 2. Each neural
net in the system is a multilayer perceptron neural network trained using the back-propagation
algorithm. Multilayer perceptron nets have been used extensively and successfully at ORINCON for
various detection and classification problems. Specifically, all of the neural networks used in the
Phase I systems were three-layer perceptrons with 20 hidden nodes in each of the two hidden layers.
The neural networks were trained such that their mean-squared output activation errors were
between 0.C09 and 0.026. The three-layer perceptron architecture is shown in Figure 4. For solving
the Phase I problem, the multilayer perceptron (MLP) approach is fine since this architecture has
been shown to implement a Bayesian classifier!0. For novelty detection (i.e., detection and
classification of new, unknown events), the MLP/Bayesian approach may not be adequate!l. For
Phase II, alternative neural net architectures will be considered.

3.0 REAL DATA PROCESSING RESULTS

3.1 Hollins Helicopter Gearbox Data

The Hollins data set provided by ONR is two-channel vibrational data from two separate
accelerometer sensors (sensor tracks 5 and 6) recorded from the gearbox in the tail of a TH-1L
helicopter. The data provided included examples of normal operation as well as examples with
the following five seeded fault conditions: Bearing, Inner Race; Bearing, Rolling Element;
Bearing, Outer Race; Gear, Spall; and Gear, 1/2 Tooth Cut.

The initial system developed for the helicopter data was a single-channel, multifeature app-oackh.
That is, only one channel (sensor track 5) was used in the processing, but data from this channel
was processed using all four feature extractors discussed in Section 2.212. Figure 5 shows the

10M. Richard and R. Lippmann, “Neural Network Classifiers Estimate Bayesian a posteriori Probebilities,” Neural
Compuwation, 3, 461483, 1991.

1A Leonard and M.A. Kramer, “Radial Basis Function Networks for Classifying Process Faults,” IEEE Contro!
Systems Magazine, April 1991.

12 T, Brotherton, T. Pollard, and D. Jones, “Application of Time-Frequency and Time-Scale Representations to
Fault Detection and Classification,” Proc. of the International Symposium on Time-Frequency and Time-Scale
Analysis, Victoria, B.C., Canada, October, 1992.
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single-channel, multifeature architecture. The first-and second-layer nets were trained using the
methodology outlined in Section 2.0.

In Figure 5, each of the feature extractors is one of the alternative spectral estimates described in
Section 2.0. The input to the first-layer networks is a two-dimensional array, in time and
frequency, of spectral estimates. Let X,M(f) denote a spectral estimate found using technique M
at time scan n and frequency f. M € {FFT, wavelet, Prony’s method, or the AOK time/frequency
representation}. Then the retina input to each of the first layer networks is

{1ogix,1,”(f),tl Snsn,fsSfS f2|}. (10)

Figure 6 is an example of the system’s operation. The input data is a cut that includes the
Bearing, Outer Race fault. Figure 6 shows five separate windows, with one window for each of
the first-layer feature extractors/neural nets, and one window for the second-layer fusion net.
Each of the windows has two sections. Figure 7 is a cartoon showing the details for the first-
layer feature/neural net windows in Figure 6. For the first-layer feature extracts/neural nets the
section on the left of the displays shows the time series of features extracted from the data. That
is, each row on the left is a separate spectral estimate of the data using the indicated feature
extractor, with time running on the y-axis and frequency on the x-axis. These feature vectors are
accumulated into multirow, two-dimensional retinas, described above, which are used as the
input to the first-layer neural nets. With each new spectral estimate, the input retina is updated
and fed to the corresponding neural network.

The right-hand portion of each window represents the neural net’s output for each retina input.
Each column represents the activation level corresponding to each class of interest. Column 6
(the rightmost column) represents the normal condition, i.e., no faults. The neural net outputs are
temperature encoded, with white indicating the highest activation level (high probability of class
membership), and black representing the lowest activation level (low probability of class
membership). The parameter settings used for each of the feature extractors and hierarchical
neural networks are shown in Table 1.

The Bearing, Outer Race fault was designated as class number 3, meaning that ideally the net
activations for column 3 would be white, with all other columns black. However, one can see
that all of the first-layer networks have trouble with the distinction between classes 2 and 3.

The Prony and AOK neural networks show a great deal of misclassification. However, the
fusion net demonstrates ideal performance. The AOK and Prony neural networks had
consistently poorer performance when compared to the FFT and wavelet neural networks.
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Figure 6. Bearing, Outer Race Fault in Hollins Multifeature System
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Figure 7. Inputs and Outputs for the First-Layer Nets

Figure 8 shows an expanded view of the AOK feature extractor applied to the Gear, 1/2 Tooth
Cut data.

The problem of the AOK and Prony methods probably has two causes. First, no attempt was
made to synchronize the data for each rotation (no sync, or tachometer, signal was provided).
Thus, when input retinas were selected for these feature extractors, the gears were in a random
rotational state, thus increasing retina-to-retina variance for the very-high-time-resolution AOK
and Prony feature extractors. In the future, synchronizing the high-resolution time-frequency
feature extractors with a sync signal may improve their classification performance.

In addition, the neural network can only have good classification performance if the testing data
“looks” similar to the training data. If there is variation between the training and testing data, the
neural net will have degraded performance. It is probable that the impulsive transients seen with
a fault condition have a great deal of variance from rotation to rotation (refer to the periodic
transients indicated in Figure 8). Because of the high time-resolution properties of the Prony and
AOK feature extractors, these transient variations are characterized quite well, thus producing
input retinas for the neural nets with a high degree of variance, which degraded classification
performance. In an interesting twist, the lower-resolution (in time) feature extractors, the FFT
and the wavelet, always had superior performance. The inherent time averaging and smoothing
of these feature extractors helped to accentuate only the stationary fault features necessary for
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classification. Thus, in the single-channel, multifeature system of Figure 5, only the FFT and
wavelet outputs were merged for the fusion net. The connections for the Prony and AOK net
outputs were, in effect, cut.

Returning to Figure 6, the fusion_net window shows the merged (appended) FFT and wavelet
activation vectors on the left, and the fusion net outputs on the right. Figure 9 is a depiction of
the input and output sections of the fusion net window of Figure 6. The output activations from
the first-layer nets have been replicated for the purposes of system synchronization (FFT net
activations by a factor of 8, and wavelet net activations by a factor of 2). Unlike the first-layer
nets, the fusion net performance is essentially perfect, with column 3 solidly lit, no false alarms,
and no misclassifications. The fusion net has successfully fused and integrated the information
from the FFT and wavelet first-layer nets to improve the system performance.

The results shown in Figure 6 prompted the development of the system shown in Figure 10. This
is the final system used for quantitative testing on the Hollins data set. For this system, only FFT
(1,024-point) processing was used for the first-layer nets. The system shown in Figure 10is a
multichannel system in which each sensor channel is processed with a 1,024-point FFT, and the
frequency range is partitioned into low and high frequencies for input into four separate first-
layer nets.

In this case, it was found that the networks associated with channel 2 (sensor track 6) did not
improve the classification performance. The reason for this is unclear. Thus, only the two channel 1
nets (low and high frequencies) were merged for input to the second-layer fusion network. Unlike
the fusion net of Figure 6, the merged inputs to the fusion net of Figure 10 have been rearranged,
with neurons from the first-layer nets corresponding to the same class grouped into neighboring
positions in the merged fusion vector as shown in the insert on Figure 10. This regrouping makes no
difference in the performance of the neural network, but it does aid the human observer. All of the
processing examples in the remainder of this proposal used this regrouping methodology. Table 2
shows the processing parameters used for this system shown in Figure 10.

Figures 11 and 12 show the response of the system to a cut containing the Bearing Inner Race
fault (class 1 - Figure 11) and the Bearing Roller Element fault (class 2 - Figure 12). For these
examples, the input data file was not used in the system training. Thus, the system had never
been exposed to the data shown. The partitioning of training and testing data is discussed more
fully below. The input retinas used are shown in the channel 1 and fusion net windows. Like the
preceding example, both channel 1 nets do a relatively good job of making the fault
classification, but the fusion net, after merging the two channel 1 nets, provides essentially

perfect performance.
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Table 2. “Multichannel” Processing Parameters

. Fs 48 KHz
. FFT 1024 pts
. Hamming Windowed
50% Overlap
= Low Frequency Retina
Bins 1-225 (50-10546 Hz)
x 10 Time Scans

=  High Frequency Retina
Bins 220-469 (10312-22000 Hz)
x 10 Time Scans
. Fusion Net Retina
12 Classes
x 100 Time Scans
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Quantitative performance measurements were made using test data. The files used were 60
seconds in length, and training and testing data were partitioned as follows. When more than one
file was provided for a given fault class, a subset of files were used for training, and the
remaining files were used for testing. Often, only one file was provided for a given class. In
these cases, the first portion of the file was used for training, and the second portion of the file
was used for testing. Thus, training data was selected from the first portion (15 seconds) of
training files, and testing data included the last portion (45 seconds) of training files and the
entire duration of the separate testing files not used in training. Because of the relative
stationarity of the data within a given file, it is the performance on the separate testing files,
which the system had never been exposed to, that provides a true measure of system
performance.

A decision threshold was defined as the difference between the highest fault class activation level
and the normal class activation level. A fault detection was declared if the difference between
the highest fault class activation and the normal class activation exceeded a predefined threshold.
In general, this threshold value is set to zero, and the classification decision simplifies to that
class with the highest activation. For all of the test results presented here, the threshold value
was equal to zero, and the highest activation was the declared class.

Table 3 shows a confusion matrix for the system of Figure 10. The input fault class is indicated
on the horizontal axis, and the resulting system output is indicated on the vertical axis. Each
element of the matrix indicates the number of times that the system declared the output class and
the number of decision opportunities for each class. Ideally, the confusion matrix should be
diagonal, indicating 100 percent correct classification. However, Table 3 shows that the system
had some confusion between fault classes 2 (Bearing, Rolling Element) and 3 (Bearing, Outer
Race) when class 3 was input to the system. Further investigation and examination of the data
showed that one of the class 3 files, cut 8, has a spectrum similar to the class 2 data, thus causing
the confusion. Table 3 represents the testing when the system was not trained using cut 8. Note
that although there is some fault classification confusion in Table 3, there are no missed fault
detections and no false alarms.

To improve the system performance, cut 8 was subsequently included in the training set, and
testing was performed again. After being trained with cut 8, the system confusion matrix was
diagonal. Even after training with cut 8, there were still two files (one normal, and one Bearing,
Inner Race fault as seen in Figure 11) used in the testing that had not been used in the training.
Table 4 summarizes these results. Because there were no false alarms throughout the testing, the
probability of false alarm, PFa, is upper bounded by the reciprocal of the number of normal class
decisions.
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Table 3. Hollins Data Confusion Matrix Trained Without Cut 8

Truth
Fauit 1 | Fault 2| Fault 3 | Fauit 41 Fault 5 {Normal
8550
Fault 1] 8550
=100%
3664 | 4886
. |Fauit2 3664 | 8550
a =100% | =57%
3 ase4
p Fault 3 8550
o =43%
> 2664
Fauit 4 3664
=100%
8550
Fault 5 8550
=100%
12214
Normal 12214
= 100%

Table 4. Hollins Data Performance Summary

Data Threshold @ P(d) P(fa) @ Confusion Matrix Summary

Trained with

Cut8 5
0 1 <8x10 Diagonal

Test All Data

Trained

without Cut 8 5 Diagonal except 57% of Class 3
0 1 <8x10 Misclassified as Class 2

Test All Data

@ Nominal Threshold Setting = 0 (i.e., Max Fauit Neuron = Normal Neuron).

P(fa) Estimates on Per Scan Basis. When NO False Alarms in Data P(fa) = 1/(total # of
normal condition scans).
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3.2  Fire Pump Data

The second set of data processed was six-channel vibrational data from multiple fire pumps. The
system used to process this data is shown in Figure 13. Table 5 shows the processing parameters
used. In this architecture, each channel of data is processed with 1,024-point FFTs. Each
channel has its own neural network, and as before, the first-layer network outputs are merged in a
fusion net for the final fault classification. The fire pump data had four fault conditions, as well
as the normal condition (five classes).

Ch1 Ch2 Cha Ch4 Chs Che
I | I
FFT FFT FFT FFT FFT FFT
I I | I [ l
NN1 NN2 NN3 NN4 NNS NN6
=
\ Merge //l
I
Fusion
NN

Figure 13. Fire Pump and Condenser Pump Multichannel Processing Flow Diagram
Table 5. Fire Pump Multichannel Processing Parameters

Fs = 50KHz

FFT = 1024 pts
Hamming Windowed
50% Overlap

Retina (Same for Each Channel)
Bins 1-200 (50-9765 Hz)
x 10 Time Scans

Fusion Net Retina
30 (6 Channels x 5 Classes/Channel)
x 100 Time Scans
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Two examples of the processing are shown in Figures 14 and 15. Figure 14 shows the system
response to a cut containing fault class 1. This file was not used in the system training. The faint
boxes in the channel 4 and fusion net windows indicate the retinas used for the respective neural
networks. One can see that channels 4 and 6 do an excellent job of classifying the fault, and
channel 5 does a partial job of correct classification. Channels 1, 2, and 3 do not classify the
fault condition correctly. The fusion net, however, successfully arbitrates and integrates the first-
layer information to achieve perfect performance.

Figure 15 shows the system response to one of the normal condition files. Again, the system was
not trained with this cut. In this example, ideal performance would be for column 5 to be white,
with all other (fault) columns black. One can see that all of the channels do relatively well,
except channel 6, which does very poorly, false alarming consistently on fault class 4. Again, the
fusion net gives perfect performance.

The above examples demonstrate the necessity for multichannel measurements and fusion. The
data is variable enough that there is no guarantee, for a given fault condition, that the test data
(Figures 14 and 15) will look like the training data for every channel. If one were dependent on
only one channel for fault classification, the resulting performance would be severely degraded.
By making use of all of the channels, there is a higher probability that a subset of the channels
will make the proper fault classification, thus allowing the fusion architecture to make the final
correct decision.

Table 6 summarizes the fire pump system performance. Again, the data was separated into
training and testing portions using the methodology outlined in Section 2.0. For the fire pump
data set, the files provided were typically 15 seconds in length. Training data was selected from
the first 4.26 seconds of the training files. Test data was taken from the last 10 seconds of the
training files, as well as from the entire duration of the subset of testing files not used in training.
Table 6 indicates the performance on all of the test data, as well as on only the test data taken
from files that had not been used in the training (six out of 16 files). For this data set, there were
no false alarms, no missed detections, and no misclassifications. The Pra performance is upper-
bounded in the same manner described previously.

3.3 Condenser Pump Data

The condenser pump data set had the same format as the fire pump data, that is, six channels of

vibrational data. The architecture used for the condenser pump data processing was the same as
that for the fire pump, and was shown in Figure 13. The condenser pump data set had two fault
conditions, as well as the normal condition (three classes). The pror essing parameters used are

shown in Table 7.
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Table 6. Fire Pump System Performance Summary

Data Threshold @ P(d) P(fa) @ Confusion Matrix Summary
Test All Data 0 1 <8x10™ Diagonal
Test on
Separate 0 1 <1.5x10 4 Diagonal
Test Data

@ Nominal Threshold Setting = 0 (i.e., Max Fault Neuron = Normal Neuron).

P(fa) Estimates on Per Scan Basis. When NO False Alarms in Data P(fa) = 1/(total # of
normal condition scans).

Table 7. Condenser Pump Processing Parameters

Fs
FFT

Retina (Same for Each Channel)
Bins 1-100 (50-5000 Hz)

50 KHz

1024 pts
Hamming Windowed

50% Overlap

x 10 Time Scans

Fusion Net Retina

18 (6 Channels x 3 Classes/Channel)
x 100 Time Scans
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Examples of the processing are shown in Figures 16 and 17. Figure 16 shows the system
response to a class 2 fault condition. Retina boxes are drawn in the windows for channel 6 and
the fusion net. As for the previous examples, the results shown are for independent test data.
One can see that channels 4, 5, and 6 do relatively well, while channels 1, 2, and 3 have very
poor performance. Again, the fusion net successfully merges the information and produces a
perfect classification.

Figure 17 shows the system performance with normal condenser pump data. Again, the system
was not trained with this cut. One can see that for this example, all of the channels have
marginal performance, with channel 3 completely misclassifying the normal data as a fault (false
alarm). The two best channels are 1 and 2, in contrast to the example of Figure 16. Like the fire
pump examples above, these two examples indicate the utility of multichannel measurements and
data fusion in the hierarchical neural net system. Again, the fusion net provides essentially

perfect performance.

A performance summary for the condenser pump data is given in Table 8. This table has the
same format as Table 5 (Section 1.4.2). Four of the eight files provided were not used in the
training, and their test results are in the lower portion of the table. Again, there were no
misclassifications, missed detections, or false alarms during the testing.

40 CONCLUSIONS
The primary conclusions to be drawn from the Phase I effort and test results are as follows:

System Flexibility. The generic hierarchical system developed in Phase I was proven to be
extremely flexible. The same general architecture has been applied to three very different data
sets, with perfect performance for each. The system is capable of extension and expansion,
depending upon the number of sensor types, number of channels, and number of feature
extractors that prove useful toward solving the problem. Because the hierarchical neural net
system is not model based, it can be quickly reconfigured and retrained to accommodate
machinery design changes or new fault detection tasks.

Perfect System Performance. The hierarchical systems developed for the three data sets
provided perfect performance. That is, with proper training, the systems achieved perfect
fault/normal classification for all of the test data run. However, because the test data was
limited, more extensive testing and quantitative analysis would need to be undertaken to produce
more reliable statistical performance estimates.
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Figure 17. Condenser Pump System with Normal Data
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Table 8. Condenser Pump System Performance Summary

Data Threshold @ P(d) P(ta) @ Confusion Matrix Summary
Test All Data 0 1 <1.72x1 ()4 Diagonal
Teston
Separate 0 1 <2.5x1 o4 Diagonal
Test Data

@ Nominal Threshold Setting = 0 (i.e., Max Fault Neuron = Normal Neuron).

P(fa) Estimates on Per Scan Basis. When NO False Alarms in Data P(fa) = 1/(total # of
normal condition scans).

FFT Feature Extractor Sufficient. For each of the three data sets, perfect performance was
attained using only FFT feature extraction. The use of FFT processing with intelligently selected
parameters would simplify the transition to a real-time system. However, it is possible that more
complex fault detection and classification scenarios will require more advanced, and
computationally expensive, feature extraction. Thus, although the high-resolution feature
extractors such as the AOK TFR and Prony modeling were not needed for these data sets, they
may be of use in the future, particularly in conjunction with a tachometer (sync) signal.

Necessity for Multifeature and Multichannel Processing. All three of the final systems
developed benefited from multifeature (Hollins data) or multichannel processing (fire and
condenser pump data). Reliance on only one feature or channel could severely degrade system
performance due to data variability issues between training and testing data. The performance of
the second-layer fusion net was seen to greatly improve overall performance by arbitrating
between sometimes conflicting first-layer results. In addition to multichannel processing, the
hierarchical approach described here can easily include additional sensor types and static
information (for example flight conditions) as well.

50 RECOMMENDATIONS

In follow-on Phase II, ORINCON would design, develop, build, and deliver a prototype
helicopter transmission fault detection and classification system to ONR for field evaluation.
The system would be developed and tested using accelerometer and other sensor data from the
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transmission of a CH-46 helicopter. This data would be supplied by ONR. The Phase II effort
would include further research into advanced feature extraction techniques and evaluation of new
classification algorithms. New classification algorithms are required to address the novelty
detection problem. The general architecture of the system would be the hierarchical neural
network approach used in Phase I. Figure 18 shows a generic flow diagram for such a processing
system. Specific objectives to be accomplished in Phase II are listed below.

Feature Extraction. Additional feature extraction techniques that we believe have potential for
better characterizing the data will be investigated. These feature extraction techniques include
data adaptive STFT processing, higher-order statistical processing (bispectra), cyclostationary
processing, and cross-channel coherence. Additionally, the data supplied by ONR is expected to
have a tachometer signal that can be used for cycle synchronization. The use of this signal in
template selection and retina generation will be exarmined, and the utility of extremely high-
resolution time-frequency representations (such as the AOK TFR and Prony’s method) will be
re-examined. It is anticipated that selection of processing parameters that make use of the
tachometer signal will improve high-resolution feature extractor performance.

Alternative Classifiers/Neural Nets. In Phase I, only three-layer perceptron neural networks were
utilized. Although we have had outstanding results with this classifier, the multilayer perceptron
(MLP) is not ideally suited to novelty detection. That is, the response of the MLP to data for which
it has not been trained is not well defined!3. We would like to investigate classifiers that behave in a
more predictable manner when confronted with new data. These classifiers will indicate if the
transmission is operating in an unknown, but not normal, manner, and will provide a measure of
similarity between the present condition and trained fault conditions. This property will aid in the
detection of untrained fault conditions and will provide an indication as to the severity of advancing
degradation. The classifiers to be examined, in addition to the MLP, will be the Radial Basis
Function (RBF) neural network and the Fuzzy Min-Max Neural Netvork (FMMNN). Because of
the inherent modularity of the hierarchical neural network architecture, it will be straightforward to
substitute the new classifiers for the MLP networks used in Phase I.

Quantitative System Analysis. Using the data set provided by ONR, extensive quantitative
system analysis will be undertaken to evaluate statistical performance. This testing will serve
two purposes. First, it will aid in the design of the system, allowing quantitative evaluation of
the utility of various data channels, feature extractors, and classifiers, in the fault detection and
classification solution. Testing will be performed on both the first-layer nets as well as the
second-layer fusion net. After the final design of the system is established, testing will be

13 . A. Leonard and M.A. Kramer, “Radial Basis Function Networks for Classifying Process Faults,” /EEE Control
Systems Magazine, April 1991,
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performed to establish the overall system capabilities. Performance measures to be evaluated
include the probabilities of fault detection, false alarm, correct classification, and misclassification.
Additionally, we would like to investigate the performance of the system as a function of fault
severity or degradation advancement. This analysis is dependent upon the supply of data with
varying degrees of fault severity.

System Prototype Delivery. The systems developed in Phase I were implemented using
ORINCON’s i860-based, real-time rapid prototyping system known as PRIISM. The Phase II
research will also be completed using the PRIISM hardware and software system. At the completion
of Steps 1, 2, and 3 above, the PRIISM system will be modified to accept real-time sensor data from
the tachometer and transmission accelerometers of the CH-46, and the system will be delivered to
ONR for field testing on the CH-46.

System Miniaturization Design. As part of the Phase II effort, a preliminary design will be
completed for miniaturization of the prototype system and transition to a commercial product. One
promising candidate for this design is the Signal Processor Packaging Design (SPPD) shared-
memory multiprocessor developed by Rockwell. Each SPPD module can accommodate up to

16 TMS320C30 processors and eight parallel and eight serial ports (32 and 6 Mbytes,
respectively). A 16-processor module can perform up to 500 MFLOPS. The package is small

(68 cm3, 75 gm) and rugged, and requires only 11 watts (5 volts) of power. The processors support
the assembler, C, and Ada programming languages.
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Acoustic Transients
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Abstract

Underwater acoustic transients from man-made
structures and biologics are rich in structure and detail,
diverse in terms of duration, and highly nonstationary,.
Orincon has an ongoing program to find algorithmic
analysis techniques that can extract features of these
transients for purposes of high confidence classification.
It has been found that no one analysis technique can
adequately capture features from all the possible
transient classes. Presented here are side-by-side
comparisons of numerous time-frequency and time-scale
representations of unclassified acoustic transients. The
techniques illustrated include the Short-Time Fourier
Transform (STFT) tuned to different analysis bandwidths,
the Gabor -Wavelet Time-Scale Representation (TSR),
the Adaptive Optimal Radially Gaussian Kernel (AOK)
TFR, and model based TFRs. The strengths and
weaknesses of the various analysis representations are
discussed.

1. Introduction

The purpose of this paper is to present an honest side-
by-side evaluation of several TFR and TSR techniques
with real transient data in order to validate the
performance claims found in the literature. It also
provides an opportunity to see the relative performance of
several TFR/TSR techniques side by side. The general
conclusion is that it is hard to beat the interpretability and
robustness of the the classic STFT when operating with
real data.. Section 2 discusses the various processing
techniques used. Section 3 provides a real data
processing example. Section 4 contains conclusions.

2. The Processing

2.1 The STFT

The STFT TFR is the best understood and most robust
of the various TFRs. Its linear response makes
interpretation of features easy to understood. It is
computationally efficient to compute with the FFT. The
only handicap of the STFT is limited resolution due to the
windowing relative to some fast time-varying feature. The

Tom Brotherton , Tom Pollard,
Rick Barton and Avi Krieger
Orincon Corporation
9363 Towne Centre Dr.
San Diego CA, 92121
short-time fast Fourier transform is found as follows: let
x(t) represent the input data set; let Xp(f) represent the
FFT of the n-th segment of data. That is,
1 N1 - jﬂ
X, ()= N Y w(t)x(nT+t)e N
1=0 0))

where typically T = N/2 (i.e., “50% overlap”) and N is a
power of 2. w(t) is a window function, such as the
Hamming window. Multiple STFT scans are appended
together to form the TFR.

2.1 The Short Time Autoregressive (AR) Model

The short-time autoregressive transform is similar to
the STFT, except the modified covariance algorithm [1] is
substituted for the windowed Fourier transform at each
time increment. For each segment normally evaluated by
the STFT, the AR power spectral density function

replaces the STFT computation:
T,
S a[m)e” j2némT
=0 4]

in which the AR coefficients a{m] are computed by means
of a least squares algorithm from the data samples. The
AR technique can provide a higher resolution over the
STFT without the complication of the quadratic terms
found in the quadratic TFRs or the need to generate a high
time-resolution scaling analysis wavelet of the TSRs.

2.1 The Singular Value Decomposition (SVD)
The SVD approach uses the eigenvectors associated

with the maximal eigenvalues of the data covariance
matrix. If x(t) is assumed to be the sum of a signal

process and noise

x(t) = s(t) + e(t), 3)
then the covariance matrix R is given by

R= R’ + Re (4)

where Rg and Re are the signal and noise covariance
matrices. Assuming that the background noise is white,
then the noise covariance matrix Re=021. Using the
SVD, R can be written as




R= i(xk VAT
k=1 ) 5)
Ak are the eigenvalues and Vi are the associated
eigenvectors and there are assumed to be n eigenvalues /
eigenvalues associated with the signal. Equation(5) is the
key to the subspace representation approach that is
exploited by *he MUSIC algorithm. Denote a matrix Tg
as

L T
T, = ZVka
k=1 . (6)

The result of using Tg on any vector in R? characterizes
the signal subspace and therefore the signal itself. For
display purposes, we use the Fourier transform of V.
Here we assume that m=1. This representation is well
suited for single sine waves. We have mainly used this
representation for detection; the SVD spectra for any
signal is significantly different then that of white noise.

2.1 The Bispectrum

The bispectrum of a stationary random process conveys
information about the third-order cumulant structure of
the process. The bispectrum is the two-dimensional
Fourier transform of the two-dimensional third-order
cumulant sequence. For a zero-mean random process the
bispectrum B(®;,w7) is defined by

B((l)l,(.l)z)= Z ZC3(nl‘nz)e’i(mlnl"'mz"z)

=y = .M

where C3(ng,n2) is the third-order cumulant sequence.

The bispectrum has many useful properties, but perhaps
the most important is that the bispectrum of a stationary
Gaussian rand~m process is identically zero. Since
background noise is gencrally a composite signal ihat
approximately Gaussian, its bispectrum is near zero. On
the other hand, the nonlinearities present in many of the
mechanisms that generate real-world signals of interest
often induce significant non-Gaussian structure, and many
such signals exhibit non-zero bispectra. In such cases,
detection and classification performance can often be
enhanced by operating on bispectral statistics rather than
second-order statistics. In effect, the bispectral statistics
exhibit an increased signal-to-noise ratio.

Here the bispectrum estimates are computed for M =
520 points uniformly distributed over the principal
domain of the bispectrum. The estimate is computed by
forming a weighted average of a number of generalized
periodograms, which are given by

1.k} = & X()X(R)X"(j+k) ®

where j and k are integers and "*" indicates complex
conjugation. To precisely define the averaging operation,
we make use of a frequency-domain weighting function
W, which can be any nonnegative function of two
variables that satisfies the constraints

(i) W(w;,0,)= W(-@,,-®,),and

(i) [ [W(@,0;)dodo, =1.
== ©)
Here a quadratic weighting function was chosen. Given
any such weighting function, we define the scaled version
WN by
w = N2~2CW Nl—-cm ,Nl—cm ,
where c is a parameter in the range 0 < ¢ < 1. Adjusting
the value of c alters the bias-to-variance ratio of the
bispectrum estimates. We also make use of a special
frequency-domain window function @, defined by
0 ifi=0(modN),
j=0(mod N),or
i+ j=0(modN)
1 otherwise

(i, j) =

This function is used to suppress the undesirable
influence of the generalized periodograms at a subset of
points in the frequency domain. The bispectrum estimate
is
B((Dl ,(1)2)

-@) T T wa(B-0.F-0) 060016
1=—08 j=—oo
ay

The entire collection of M bispectrum estimates forms an
M-dimensional vector. The M points in each vector are
arranged in order of increasing value for each of the
frequency components, with the first component 1
varying most rapidly.

2.2 The AOK TFR

An instantaneous time / frequency representation (TFR)
gives a high resolution characterization of the data in time
as well as FFT resolutions in frequency for signals of
interest. The particular TFR that we use here is the
adaptive optimal radially-Gaussian kernel TFR developed
by Baraniuk and Jones [2][3]). The TFR uses a radially-
Gaussian signal-dependent kernel that changes shape to
optimally smooth the distributios.

The optimal kernel, @, for a signal is defined as the
solution to the following optimization problem:

ma% 3" 15 |Ac. v) (. v iy 12




subject to

r!

“9al
d’(r.w):e 20°(¥) (13)

1 2% coo 2
— O(r, rdrdy<a, a20
210 fol ( ‘V)I Y . (14)
A(r,¥) is the ambiguity function (AF) of the signal in
polar coordinates. Once the optimal kernel is computed,
the TFR is given by

1 a0 - _.et- .T(l)
P(t,0)=—]"_|= A®,7) ®(6,1) e 1" dodt
)= 5= [T L AG.D) 00,7 5

The representation is good for characterizing short
duration and nonstationary events. The AOK TFR is
computationally expensive. As with the STFT feature
extractor, a time sequence of the AOK TFRs form the
input retina.

2.3 The Prony Model Method

Prony's model method assumes the signals of interest
are modeled by a sum of damped sinusoids. The model is
well suited for characterizing impulsive type of events
(5). The resulting model gives a variety of parameters
that may be exploited for characterizing transient
waveforms, The Prony Model is of the form :

xin}= ¥ A, expl(ay + j2nf J(n — DT + 0y |
k=1 (16)

where x[n] is the observed time series data, p is the model
order, Ay is the amplitude of the k-th coefficient, ak is
the corresponding damping term, fx is the center
frequency, T is the sample interval, and O is the initial
phase. The parameters of the model can be estimated
using least squares techniques [1]. Several different noise
discrimination techniques have been developed for use
with the Prony model method. In the processing
presented here a time sequence of spectral estimates
similar to those defined for the AR model in equation (2)
are computed using the Prony model parameters.

2.4 Wavelet Processing

The wavelet transform (WT) is a time domain
representation of a signal in terms of dilated and shifted
versions of suitable analyzing wavelets. The wavelet
transform of a function f(x) represents a decomposition of
the function in terms of dilated and shifted versions of an
analyzing wavelet function y(x). The transform is linear,
energy preserving, and invertible so for every function
f(x), there is a unique, continuous 2-D transform Wf(s,u).
The wavelet transform can also be regarded as a time-
frequency representation of the signal, in which the

parameter s > 0 corresponds to frequency and the
parameter u € R corresponds to temporal shift. The
wavelet transform has many interesting properties that
make it particularly well suited as a signal representation
(61.

The wavelet transform can be viewed as a time-
frequency map of the signal in which the frequency
information is generated by a bank of proportional-
bandwidth filters. Because of the inverse relationship
between bandwidth and temporal support, the wavelet
time-frequency representation automatically provides
greater temporal resolution for high-frequency signal
components. This is often very useful when analyzing
transient or highly nonstationary phenomena.

The wavelet features presented herein were generated
using an analytic Gabor wavelet. The wavelet is defined
in the frequency domain by the following equation

0% (0-w,)? o (w+w,)® )
R P
H(w)=<2i

if 20

0 if w<0 an
where o = 2r and ¢ = 6.1182. This choice of parameters
results in a time-frequency map in which the bandwidth
of each frequency bin is approximately 1/16th of an
octave.

3. Real Data Processing Results

Two data sets are considered; the dropping of a wrench.
and a whale call. Both events are complicated time-
varying signals that are difficult to analysis. The sample
rate was 32000 samples per second.

The STFT TFR uses 64-points per scan with 56 points
of overlap between scans. The data was windowed using
a Hamming window and zero padded to generate a 512
point transform.

The AR TFR uses a 64-points analysis window with 56
points of overlap and order 20 AR/linear prediction filter.
The AR function is evaluated at 512 points in the
frequency domain using an FFT.

The Prony model uses 64-point analysis window with a
56 point overlap and an order 16 for the wrench and order
20 for the whale. The Prony model is evaluated at 512
points in the frequency domain with an FFT transform of
the model coefficients.

The AOK TFR uses 512 points in the analysis window
for each scan. The data overiap between scans is 504
points (i.e. 8 points are skipped between scans). The
kemnel volume constraint was set to & = 2.25.

The SVD algorithm uses a 512 point FFT on the largest
eigenvalue eigenvector. The algorithm used an 8x8




matrix which was averaged 16 time each pass through. 32
new samples were brought into each new pass.

The bispectrum uses an analysis window of 128 points
and ¢=0.5 was chosen. These parameters give an
averaging region which uses approximately 4 generalized
periodograms.

The wavelet transform uses differing numbers of
samples for each frequency bin output. Here 256 bins
were generated beginning with a center frequency of 400
Hz. and increasing geometrically to the Nyquist
frequency. The time shift variable was incremented 20
samples for each step.

Figures 1 and 2 show the various TFRs / TSRs. The
data values are encoded using a grayscale; white pixels
are relatively large values and black pixels have low
values.

4. Conclusions

For the most part it is hard to beat the STFT for feature
interpretation. However there are unique features that can
be determined in all of the different representations.
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Figure 1. Various TFRs for Wrench Drop Data
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